Monte Carlo simulation-based sensitivity analysis of the model of a thermal-hydraulic passive system
نویسندگان
چکیده
Thermal–Hydraulic (T–H) passive safety systems are potentially more reliable than active systems, and for this reason are expected to improve the safety of nuclear power plants. However, uncertainties are present in the operation and modeling of a T–H passive system and the system may find itself unable to accomplish its function. For the analysis of the system functional failures, a mechanistic code is used and the probability of failure is estimated based on a Monte Carlo (MC) sample of code runs which propagate the uncertainties in the model and numerical values of its parameters/variables. Within this framework, sensitivity analysis aims at determining the contribution of the individual uncertain parameters (i.e., the inputs to the mechanistic code) to (i) the uncertainty in the outputs of the T–H model code and (ii) the probability of functional failure of the passive system. The analysis requires multiple (e.g., many hundreds or thousands) evaluations of the code for different combinations of system inputs: this makes the associated computational effort prohibitive in those practical cases in which the computer code requires several hours to run a single simulation. To tackle the computational issue, in this work the use of the Subset Simulation (SS) and Line Sampling (LS) methods is investigated. The methods are tested on two case studies: the first one is based on the well-known Ishigami function [1]; the second one involves the natural convection cooling in a Gas-cooled Fast Reactor (GFR) after a Loss of Coolant Accident (LOCA) [2]. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Reliability and Sensitivity Analysis of Structures Using Adaptive Neuro-Fuzzy Systems
In this study, an efficient method based on Monte Carlo simulation, utilized with Adaptive Neuro-Fuzzy Inference System (ANFIS) is introduced for reliability analysis of structures. Monte Carlo Simulation is capable of solving a broad range of reliability problems. However, the amount of computational efforts that may involve is a draw back of such methods. ANFIS is capable of approximating str...
متن کاملSensitivity Analysis of a Wideband Backward-wave Directional Coupler Using Neural Network and Monte Carlo Method (RESEARCH NOTE)
In this paper sensitivity analysis of a wideband backward-wave directional coupler due to fabrication imperfections is done using Monte Carlo method. For using this method, a random stochastic process with Gaussian distribution by 0 average and 0.1 standard deviation is added to the different geometrical parameters of the coupler and the frequency response of the coupler is estimated. The appli...
متن کاملEvaluation of the effect of reservoir length on seismic behavior of concrete gravity dams using Monte Carlo method
In present study, the effect of reservoir length on seismic performance of concrete gravity dam has been investigated. Monte Carlo probabilistic analysis has been used to achieve a sensitivity of the responses to variation of truncated reservoir length in finite element model. The ANSYS software based on finite element method is applied for modeling and analysis. The Pine Flat dam in California...
متن کاملUncertainties due to Fuel Heating Value and Burner Efficiency on Performance Functions of Turbofan Engines Using Monte Carlo Simulation
In this paper, the impacts of the uncertainty of fuel heating value as well as the burner efficiency on performance functions of a turbofan engine are studied. The mean value and variance curves for thrust, thrust specific fuel consumption as well as propulsive, thermal and overall efficiencies are drawn and analyzed, considering the aforementioned uncertainties based on various Mach numbers at...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 107 شماره
صفحات -
تاریخ انتشار 2012